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O/
R
Zi ON A METHOD OF SYNTHESIS OF NETWORKS?
NN by O. B. Lupanov
/’ Translated by S. W. Golomb
‘ J0070
\ A description of a certain general method for the

synthesis of networks-for example, contact networks,
contact parallel-series networks, and networks of functional
¢ elements—is given, and the previously known estimates

of the complexity of these networks are improved upon.

Aurgsr

One of the problems of cybernetics [translator’s note: U. S. usage = electronics] is the problem of
constructing networks which realize prescribed functions out of comparatively simple elements. This might
be, for example, the synthesis of electronic networks out of standard blocks, or relay contact networks out of
standard relays, etc. In doing this, one generally attempts to construct, in one sense or another, the optimum

networks.

In many cases, there are trivial procedures for finding such extremal networks; however, they are not
effective enough in the sense that they involve very extensive computations, and, moreover, give no advance
indication of the complexity of the network which will be obtained. Consequently, the question arises of dis-
covering a more effective method for constructing sufficiently good networks with estimates {bounds] on the

complexity.

A function for estimating the complexity of networks, evaluating objects from some sequence J{ = T(l,
T(2, ey T(n, ... of collections of objects (in our case, T(n is the collection of all algebraic logic functions of
7) arguments), can be introduced in the following manner. Let each network & under consideration be placed

in correspondence with the real number L (8) — the ‘‘index of simplicity”’ (requiring that the index of

8Sections 2 and 3 have not been translated here.



simplicity characterize the complexity of the network). We examine the following function: L (f) = inf L (8)

(where inf is taken over all networks S which realize the function f); and L(n) =sup L (f)*l
e,

The problem of network synthesis with estimates has been investigated by numerous authors [1, 5,
7, 8,9, 10, 12, 14, 16, 20 et al]. Here it is intended to direct attention to one universal method" 2 for three
cases: in §2, for the synthesis of contact networks (the previously known upper estimate [ 20] is reduced
twofold); in § 3, for the synthesis of contract II -networks (the previously known upper estimate is substan-
tially lowered); in §6,for the synthesis of networks out of functional elements, this problem for one particular
3

case is resolved with some significant finality ° (the definition of such networks is given in §4).

*1 The function L (n) was introduced by C. E. Shannon [20] for estimating the number of contacts in a contact
network.

*2This method was previously applied by the author to the synthesis of diode and contact-diode networks [3]
P y app y y

*3Here an asymptotic formula for L () is obtained, whereas in the work of D. O. Muller [16] there are upper

and lower bounds for this function. For details conceming formulation of the problem, see §4.



1. THE “PROPER REPRESENTATION" OF THE FUNCTIONS OF ALGEBRAIC LOGIC

Every function of algebraic logic f can be exhibited by a table with binary entries (cf. Table 1).

Table 1
0 o, 1 x.
. ik+1 ] el
x‘l o1 xik 0 O.in 1 xtn
0 0 0 Al
A2
Al
% Ty G | v %)
A
p
1 1 1 A,

In this paragraph, the number & and the arguments xil, ves xik; x‘.k ! TS 2 listed in the Table will be
+ n
regarded as fixed. The matrix defining the meaning of the function f will be denoted by M (f).
We dissociate the rows of the matrix M(f) into groups 4,, -, AP (c¢f. Table 1). We denote by

f’.(xl, e, xn) the function which coincides with f(xl, . xn) for the rows of group A}. in M(f) and equals

0 in the remaining cases.'? Thus,

flag oo x) =\ [lay, oo 5).

j=1

* . . . : .
dWe will say in this case that the function fl is restricted to the arguments x; , =, x; .
1



Let us consider the matrix M(f]) Its columns are dissociated into groups equally among its own
columns [let the number of groups be equal to ¢(j)]: we will enumerate these groups. The function f] can be

represented in the form

t(j)
=~/ fw
k=1

where fjh coincides with f]. in the kth group of columns and equais 0 in the remaining cases. It is apparent

that
= f(D) . f(2)
where 3
(1 GO
1 e L x. ) = R BT
fjh (xil’ ’ xzk) \/ xtl x‘k

[regarded disjunctively on the collection 2](‘};) of sets (Ui s, O ), which correspond to the non-zero rows
1 k

of the matrix M(f].h)];

2
fj(h) (%

S L ipe1 iy

(2)
[regarded disjunctively on the collection Eih of sets (Uik )0y O ), which correspond to the non-zero
+1 n

columns of the matrix M(f’.h)].

Thus,
P p o t(j) - o % i
f(xl’ e, %) V f. = v inl"'xik . \/xik+l xin (1.1
nooyo Y Y 1 k k+1 n
j= j=1 k=1
( yes! ) es’
T,y eee , O, €2. ., , o0, O, €2, .
h L 51 iR
*5

%7 will denote x if = 1, and x if =0,
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- 9 e aw G S = W

Ny eB e S S 9 o

all e

The representation (1.1) will be called a proper representation of the function f, if the groups
Ay, e AP have an equal number s of rows (although they could be, for one thing, contained in a smaller

number of rows). The numbers k and s will be termed the parameters of this representation.



4. NETWORKS OF FUNCTIONAL ELEMENTS

, . . * .
We will examine the networks [2) constructed from functional elements 6, that is, elementary sub-
networks [2], having any number of input terminals and one output terminal; every function is realized out of

elementary subnetworks from the arguments, the collection of which equals the collection of input terminals

-
i

P ool i (1o 3 ¥ 7 i . T v F ool . . . .
of these subnetworks (Fig. 6) ‘. We will give a definition of the notions of networks, vertices, and input and

output terminal networks.

Fig. 6

DEFINITION"® (by induction)

1. Functional elements will be networks; the corresponding input-terminal and output-terminal
functional elements appear at their input terminals and output terminals; the collection of

their vertices coincides with the collection of all the terminals.

2. If S and S” are networks without common vertices, their union is a network; the collection
of its vertices, input, and output terminals, is derived by joining (set-theoretically) the

corresponding collections of networks S’ and S” (¢f. Fig. 7a).

3. If S is a network, the result of identifying (‘‘fusing’’) some inputs of a terminal is likewise

a network (S'). The collection of vertices, input, and output terminals of the network S’

*
6In some cases we will drop the word ‘‘functional.’’

*
7The number of input terminals of the functional elements can be equal to zero; in that case, one realizes

functions of 0 arguments, i.e., constants.

*
8 This definition appears for the special case of defining networks, given in [2). With modifications, it
approximates the definition of logical sets, introduced by Burks and Wright [13].
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Fig. 7

essentially corresponds to the collection of vertices and terminals of the network S, if

one does not distinguish vertices identified in the formation of the network S'(Fig. 7b).

. If $"and S" are networks without common vertices, with the corresponding collections of

input and output terminals being M |, M2' and M|, M, the result of pairwise identification
of some collection Né(distinct in pairs) of output terminals of the network S’ with some

collection N (including as many elements again as in N,) of similarly pairwise-distinct



input terminals of the network $” will also be a network (S). The collection of its input
terminals will be the set MI' U (Mi'\Ni’); the collection of its output terminals will be
MéUMé'. The collection of vertices of the network S coincides with the collection of
vertices of the networks S'and S"if one does not distinguish vertices identified in the

formation of the network S (cf. Fig. 7¢c).

5. If S is a network, the result of designating as output terminals some subcollection of the
collection of output terminals of the network S will also be a network (§'). The collection
of vertices and input terminals of the network § "coincides with the corresponding

collection of the network S (¢f. Fig. 7d).

We will say that the network Srepresents a network of the collection {E?} of functional

elements, if all functional elements of the scheme S belong to the collection {E}.

Let a network have n input terminals ap, e, Q. We associate with these the corresponding argu-
ments x, -+ , X, . The function realized by the network is calculated by the following rules (we define the

designation of a function from the set (07, «-- , o) of designations of the arguments):

1. To the input terminals of the network, ay, =, a,, we ascribe the corresponding desig-

nations Ty =25 O

2. 1f the designations ¢, «- , t_ are already ascribed (in order of the number of their input
terminals), its output terminal is designated’ fE (tl, e, ts), where fg is the function

realized by the functional element E.

From the definition of networks it follows that every vertex of the network will be ascribed some
designation, and moreover uniquely. The designation ascribed to the vertex C appears by definition in that
of the function Fc(xl, oo, xn) from the set (o, -, Un). By means of this function, we will exhibit that

which corresponds to the output terminal of the network under consideration.

Let each functional element E be ascribed a non-negative real number P (E) —its weight. The index

of simplicity L (S) of the network S is defined as the sum of the weights of all the functional elements in S.

The reduced weight p (E) of the functional element E, for functions which essentially depend on

s 2 2 arguments, will be described as the number P (E)/(s-1).



The aim of the following paragraph is the description of a method of synthesis of a sufficiently
economical (in the sense indicated by a higher index of simplicity) network for the realization of functions of
algebraic logic. The collection {E} of elementary functions, for which the networks are constructed, will be
assumed to be complete; i.e., it will be assumed that networks from { E} can realize arbitrary functions of
algebraic logic.

Let L (n) be the set of numbers such that networks with index of simplicity not exceeding L (n) can
realize arbitrary functions of algebraic logic with n arguments.

Theorem 4. If {E} is finite with all P(E) positive, then™?

n

2
L(n) ~ (min p(E)) - ,

there being for arbitrary € > 0 and n > n(¢€) an allotted function f of the n arguments Xy oty Xy for which

L(f) < (1~ €) L(n), tending to zero with increasing n.

The proof of the theorem breaks down into three parts. In § 5, an auxiliary assertion will be proved,
utilized in the description of the method of synthesis. In § 6, the method of synthesis is described, and a

bound from above is obtained. In § 7, the lower bound is proved.

"9 We recall that the function p (E) is defined only for functions realizable from functional elements, essentially

depending on more than one variable.



5. LEMMA

We introduce some notation. Establish, between sets (o, « , Uu) of zeros and ones of length 4, and
the whole numbers ¢, 0 < ¢ < 2%, determined subsequently, the (reciprocally single-valued) correspondence:

The number ¢ corresponds to the set which exhibits the binary digits of the number g¢; that is,

u .
g= X o 2",

—
-

The number g corresponding to the set (o, +- , Uu) will be designated q(Ul’ Ty ** s qu), while the set

corresponding to the number g will be designated (0, (9), -+ , 0, (9)).

Lemma. Let the function F(xo, vee xN_l), N 2 2%, essentially depend on all N arguments. Then,
the functions Y, (yl, Yy 2), 0 < { < 2% and (in the case that N > 2%) Xi(yl, -, yu), 2% < i <N, also
exist such that an arbitrary function of algebraic logic f(yl, Y Zp ot zk) can be represented in the

form™* 10

f(yl’ LYy zl, .., zk)
=F(¢’0 (y].’ "ty yn; [(07 AR 01 zla R} zk))7 Tty ¢’2u_l(y1, MY yuy f(l, ey, 1, z]’ ety zk))’

X2u (yl’ "ty yu)y ety XN_I(yl9 R yu))- (5-1)

Proof. Since the function F depends essentially on all its arguments, then for every j, 0 < j < 2%,

there exist constants Ci 0 0 < i <N, such that*11

F(Ci gy € g %, C

j.07 7T T jsr o G- = 5B G (5.2)

]

We examine the functions ; and Xi , defined in the following manner:

C. ki,
Y (o (), ey 0 (), 2) = 0 <i<2yy, (5.3)

@, =i

*10 The formula (5.1) represents its own generalization to the decomposition of functions on the arguments
Yot Yy
*Myere the sign € denotes addition modulo 2.

10



XL, (o'l (), -, O'u(j)) = Cj,i ¢ < i <N). (5.4)

These functions satisfy the stated lemma. In the same way, we examine the arbitrary set
(o}, +++, o). It exhibits the binary digits of the number j = ¢ (o, o, ), 0.5 j <2% From (5.2), (5.3), and
(5.4) we have

F(¢0 (Ul(])y ey Uu(j), f(o s "y, 01 219 oy Zk))y "ty
¢2u_l(ol ()5 ooy 0, () fAL, er s 1y 2y, oe s 2)),
qu(crl(j), ey 0, (1)), ey Xy oy (07 (), e, 0, ()))
= F (C].,O, e, C

i [ e 0, (), 2y, e 2)) S Cijr Cijerr e » Cin-y) =

= f(ol(])’ "t Ou(j)’ 2y zk)-
The lemma is proved.

Remark. It is evident that each of the functions ), can be represented in the form

Hl}‘(qu b} yua Z) = Z‘plo(qu b} yu) \/ Zl’bll(yl’ MY yu)s (5.5)

where ¥, and Y, are some functions of the arguments y, -, y, .

n



6. THE METHOD OF SYNTHESIS AND THE UPPER BOUND

Let us consider an arbitrary function of algebraic logic f of n arguments. It can be represented in the

form

—
—~
[,
o}
~—

where the functions f] are relative to the K arguments x__; ., =, %, (cf. §1); in the proper representation

P
f= \/ fj’ it has the parameters & and s.
i=1
Let the elementary subnetwork E, with minimal reduced weight p(E ) realize the function ¢, and let

¢ essentially depend on r + 12 2 arguments. We examine the function

Flyg > 3,0 = Dl = » ¥popr Ply, s v oo B (oyes ™ s For) ) Ds

. « . " . .. *
where v is the minimum number such that 2% — 1 < vr <2% — 1 + r, while u satisfies the condition u < n - ¢ 12

The function F clearly depends essentially on all its arguments.

On the basis of the lemma of § 5, each of the functions f]-(O’ bty Oy Eyygs 0t xn) can be repre-

sented in the form
fj(o-l’ tt O—‘a xl"’l’ tt xn) =
F(\/]O (x+1, vee xt+u’ f](ol’ (XL Ut’ 0’ eee O, xt+u+1’ LLR I xn)), see

S

2 —1(xt+1’ e Epy O e O Lo Lx g s %)),

n

X2u (xt+1’ AR xt+u)’ A} xvr (xl"’l, et xt"’u))’ (6-3)

where the functions ), and XL. do not depend on the set (o, «-+, 0).

*lerom here it follows that

2LL

v< — +1 (6~2)

12



As already indicated, we suppose that the collection {E} of elementary functions is complete.
Therefore, there exist networks T, Ty, Tj, realizing the corresponding functions Fl(x) = x, Fz(x, y) = xy,
Fs(x, y)=xV y; the first of these networks has one input and one output; each of the remaining two has two
inputs and one output. Let the indices of simplicity of these networks equal, respectively, ll’ l2, ls. We will
utilize these networks in the process of synthesis in the capacity of ‘‘standard blocks.” We will also employ
the “‘standard block™ T,, realizing the function Flyg, «+, v ) (with index of simplicity I, = vP (EG))T 13

The network S for the function f we will construct from specific large blocks. Each of these will be
constructed from standard blocks. The lower reduction describes these large blocks. The inputs of each of
them either join to the previously described blocks, or appear as inputs of the networks (in succeeding cases

it will be decreed that the arguments are placed in correspondence with them).

DESCRIPTION OF THE NETWORKS (combination of blocks schematically portrayed in Fig. 8).

Xn m_xl+u+l Xty ""xf+l Xy m.xl
! ™ 1
a b c
d
|
9
f
Fig. 8

* . .
13As will be seen from what follows, the networks will consist almost entirely of function elements with
minimal reduced weight.

13



I. Block A realizes all functions f].(-o , e, O

s Oy Fpayar " xn). It has k = n - ¢t — u inputs,

corresponding to the arguments x,, .y, ==, %, and constructed of the standard blocks Tl’ T2, T3.

1) To begin with, the functions ;‘.(t +u+1Z2i £ p) are realized; for them, &k standard blocks

T, are required. The index of simplicity of this part of the network equals k1.

o o4
+y + . . .
'i.,li11 ., x " are realized. For the realization of each of them

2) Next, all conjunctions x
(proceeding from the functions % and ;i)’ k - 1 standard blocks T2 are required; for the
realization of all the conjunctions, (£ - 1) 2% standard blocks T, are required. The index

of simplicity of this part of the network equals (k¥ — 1) ok Ly

3) Finally, wirealize all functions fj(Ul, T Xy pr xn) (not more than
2
p2°=< | — + 1] 2° such). Every function, except for ““identically zero,” is
s

realized as the disjunction of appropriate conjunctions; for them, not more than s standard
blocks T3 are required. “‘Identically zero’’ can be realized, for example, as x_ - x_; for
n n
it, one standard block T, is needed. The index of simplicity for this part of the network
ok
does not exceed s (— + 1) 25l3 + 1.

)

In this manner, the index of simplicity L (A) of Block A satisfies the relation

S

k
2
LA <kl +hk2Fly + s <— + 1) 251,. (6.4)

e+ v Tty

II. Block B realizes all conjunctions x, ;" - %,

. It has u inputs, corresponding to the arguments
%X,,4, **, x,, , and 2% outputs, and is moreover arranged as is the corresponding part of Block A. Its index of
t+]1 t+u p g p g p

simplicity L (B) evidently satisfies the relation

L(B) Suly +u2l,. (6.5)

a. [og
III. Block C realizes all conjunctions xll . x, !, It has ¢ inputs corresponding to the arguments

R and 2° outputs, and is moreover arranged as is Block B. Its index of simplicity L (C) satisfies

the relation

L(C) S el + z2‘l2. (6.6)

14



IV. Block D realizes all functions \,bi (x“l, SUINE S f].(O'l,

xi(xtﬂ’ s Ep)-
A.
1
2)

» Fpayr By a1 0 xn)) and

The inputs to these blocks are the outputs of Block B and some of the outputs of Block

For the realization of every function Xi (as a disjunction of suitable conjunctions) not
more than 2" standard blocks T are required. The number of functions X; does not
exceed r (cf. the previous page). Therefore the index of simplicity of this part of Block

D is not more than r 2% l3.

We have (cf. the remark after the lemma of § 5)
b xt+u’ f](O‘ s "t Ut+u’ xt+u+l’ AR xn))
= o s Gy By o E) by (g s w)

\/ f}.(O' s "', 0[+u’ xt+u+1’ cee

s xg) o s g,

For the realization of each of the functions ‘kpio and ;| formed from the conjunctions

o o
xtffl xzi:" not more than 2% standard blocks Ty are required; for the realization of

each of the functions k/!i(xtﬂ, s Xy fj.(O' st Oy Ty b xn)) (formed from

l’biO and k/J” and the functions realized by Block A), two standard blocks T2 and one each
of the standard blocks Tl and TS' The number of functions L,ZJL. equals 2%; the number of
k

distinct functions f].(Ul, , xn) does not exceed | — + 1] 2°.

s
Therefore the index of simplicity for the part of Block D realizing all functions

T L

L/Ji(xkﬂ, ST S f].(-a s Oy Xy xn)), does not exceed

2k
ou (—— + 1) x 25 [ll + 21, + (ou*l 1)13]~

S

The index of simplicity L (D) of Block D satisfies the relation

2k
L) < r2tly + 2 <—— + 1> 98 [ll + 20, + (ou*l 4 1)13]. (6.7)

S

15



V. Block G realizes all the functions f/.(cr s Oy Xyyps xn), formed from the functions

realized by Block D. For the realization of each of them, one standard block T4 is required [cf 6.3)].

ok
L(G) =2 <_ + 1) l - (6.8)
S

VI. Block F realizes the function f, formed from the functions realized by Blocks C and G [cf. 6.1].
k

It contains not more than 26 —— 4 1  standard blocks T2 [for the realization of each conjunction
s

Therefore

o

o 2
chl1 xt‘ fj(o'l, e Ty Xypyps xn)] and not more than 2° - + 1} standard blocks T3 (for the realiza-

tion of these conjunctions of the function f). Therefore

2k
L{F) <2t (— + 1> Iy + 1), (6.9)

S

From (6.4), (6.5), (6.6), (6.7), and (6.9) we have

L'=LA) + LB + LICY +L(D) + LF) < Nll1 + Nyl + N3l3, (6.10)
where
2k
Ny =k+ust+2¢" |\ — + 1), (6.11)
S
ok ok
Ny=k2F vu2t v a2t v 220" v} + 28| — 4+ 1), 6.12)
s s
2k 2k 2k
Ny=s2{ — +1)+r2t+ 22" — 41 vl 1) + 2t — +1). (6.13)
s s s
We now set
k= [210g2 n), u-= [log2 n), s=1I[n- 5 log, nl; 6.14)
then
t=n-k-u<n-3loggn+ 2. (6.15)
16



We introduce the notation

nl

+1=N,. (6.16)
n-5logyn~1

From (6.11), (6.12), (6.13), (6.14), (6.15) and (6.16) there follows:

2" 2"
Nl-_<n+-—N0=O(—> : (6.17)

< 0.2 4.2" 2.2" 4.2" 2"
Ny < 2n°logy n + nlogyn+(n~3logyn+2) 3 + N, + 3 No=0[—] ,

n n4 n

n n n

< 2" 2" 4.2" 2"
N3»_(n-510g2n)-—;N0+rn+——4——(2n+1)N0+ 5 Ng=0([—}) - (6.19)

From (6.10), (6.17), (6.18), and {6.19) it follows that

zn
L'=0 {—]) . (6.20)
n2

From (6.8) and (6.2) we have:

2k ou t+k +u on
LG <28 — + 1) [— +1) P(Ey = (1+0(D) P(Ey) = P(E)) — (1+0(D),
S r rs n
(6.21)
P(E,)

because t + k + u = n and

= p(EO). It is clear that
r

L(S)=L"+ L(G).
Therefore [cf. (6.20) and (6.21)]

2"
L(® < plEp) —— (1+o(D).

n

17



7. THE LOWER BOUND

In the work of the author [4], a theorem is proved concerning lower bounds for the index of simplicity
of networks of arbitrary elements. However, in our present case we get bounds from it which are insufficient

for the proof of the theorem. Therefore, another proof is given here.

We calculate the number of functions of n arguments, E DRI A realized by networks with index of

simplicity not exceeding L.

1. We will consider trees with roots [17], i.e. trees [15] at each of whose outputs there is one

vertex which is the root.

Lemma 1. The number S(#) of trees with roots, having & ribs, satisfies the relation” 14
S(h) £ 47

Proof. The collection of trees with roots can inductively be determined in the following manner:
a) a rib with one marked vertex is a tree with a root; b) if Al and A2 are trees (without common vertices),
with corresponding roots a; and ay, the result 4 of identifying the vertices ay and a, is a tree with root
a, = a, (cf. Fig. 9a); c) if 4 is a tree with root g, the result 4 " of annexing to a the rib ab (where b is not a

vertex of A) is a tree with root b (cf. Fig. 9b).

0|=02

(a) a) apz (b) o

*144 more precise bound is obtained in (17] with the help of generating functions.

18



To each of the trees with roots can be juxtaposed (generally speaking, not uniquely) a word from the
alphabet {a, 8} in the following manner (in accordance with the inductive structure of these trees): a') to the
tib of step a), juxtapose the word a; b') if to the trees 4, and 4, of step b) are juxtaposed the correspond-
ing words A; and A,, then to the tree 4 is juxtaposed the word A  A,; c¢') if to the tree 4 of step c) is

juxtaposed the word A, then to the tree 4 ' corresponds the word a A 3.

For example, to the tree of Fig. 10 can be juxtaposed the word

aagafapapapfBafppopepfoacfafaBapBal -

Ay Ay

In it appear the subwords A1 and A2’ corresponding to the subtrees A1 and A2.

Fig. 10

We note that on the word A, corresponding to the tree A4 with root, the latter is reestablished uniquely

(with exactness up to isomorphism [15], root is transformed into root).

To a tree with A ribs corresponds a word of length 2% Therefore, the number of trees with roots,
having A ribs, does not exceed the number of words of length 24 from the alphabet {a,B}, i.c 22k _ gk,

The lemma ts proved.

Corollary. The number S(k, n) regulating (i.e. enumerating) systems of n trees with roots (some trees

can be vacuous) having in aggregate b ribs, satisfies the relation
Sthyn) < (h+n) 4"

19



In fact, the number of ways of decomposing the number 4 into n integral nonnegative parts AL

n .
p(n) ( s 2 h) equals the number of combinations with repetition of 4 + 1 elements by n = L5
i=1

c? :}1_1 < (n + R)"; every such decomposition corresponds to Sy . Sy . L sy < gh systems of

n

trees (here S{0) = 1).

2. We will now consider oriented graphs [15], not containing oriented cycles (i.e. subgraphs con-

sisting of edges (a. , La, a; ) wee, {a, , {a,
3

a. a. a.
1t 2 .20 WL Y B
oriented in the direction toward them (inputs in their edges) will be called the introverted vertices of the

AV

a ) a. ) a. }). Vertices with each of their incident edges

graph; the remaining vertices are inputs. The order of an introverted vertex is what we call the number of

incidental edges which are directed toward it.

Let the graph G have h‘S introverted vertices of order s, 1 < s < m, where m is the maximum of their
orders. The set H = (hl’ h2, e, hm) will be called the order structure of the graph, and the number u (H) =
2 sh /Zh is the average order of the graph (in other words, the average order is the average arithmetical

order of the introverted vertices).

We denote by R (n, H) the number of nonisomorphic [15] oriented graphs without oriented cycles

with n distinguishable (i.e. numbered) input vertices, and order structure H.

Lemma 2.

R (n, H) < 84DA (4 p)(lH)=Dh+n

where

h=Sh,

Proof. In every star of an introverted vertex of an arbitrary oriented graph without oriented cycles,
we distinguish a single input among its edges. The number of these edges equals . From the collection an
ordered system of n trees with roots is formed. Therefore any oriented graph with order structure H with n
distinguishable input vertices can be obtained from some ordered system of n trees with roots in the following

manner. We designate the vertices of this system as roots of ascribed order: the order s is ascribed to h

*lsThal is, the number of ways of arranging n =1 ‘“‘commas’’ before, after, and between the digits of an A-digit
number; the number of digits between successive ‘‘commas’’ equals the corresponding part; between successive digits
several ‘‘commas’’ may be inserted — for example the decomposition 7 =0 +0 +1 +3 +2 +0 + 1 + 0 corresponds to the
arrangement of ‘‘commas’’,, 1, 111, 11,,1, . These arrangements of ‘‘commas’’ are combinations of ‘‘empty spaces’’
before, after, and between the digits of an h-digit number with repetition.



vertices (the number of ways of assigning the orders equals the number of ways of decomposing the number
m

B'=u(Hh= 21 sh into corresponding numbers of ordered natural terms, each of which does not exceed
S =

. . * . .
m, i.e. this does not exceed 24 '). 16 Next, every vertex of order s connects s — 1 edges directed to it with
some other vertices; the number of ways of connecting each vertex does not exceed the number of combinations
. . . s-1 . . .
with repetition from A + n elements by s ~ 1, i.e. Ch +stn-25 the number of ways of connecting all introvert
. *
vertices does not exceed” 17

m A

s=1 s <
sl;ll (Ch+n+s-2) -

(s-1)h "~
s _Ghamh

m

I (h+n)
s=1
In general, the number of graphs with order structure H with » input vertices, therefore, does not

exceed (lemma 1)
(hem™ . ah . 9h (hym)h™h < gh (44 b hin
The lemma is proved.

3. We replace, in the network of functional elements, each of the last stars of edges, oriented toward
the center of the star, in number equal to the number of input functional elements (the center of the star
corresponds to the output terminal of the functional elements, the remaining vertices, to the input terminals);
after that we write under the center of each star a symbol, denoting the functional element corresponding to
it, and its edge number, corresponding to the number of representations by them of inputs of functional
elements (cf. Fig. 11). The oriented graph obtained by virtue of the definition of networks from functional
elements will not be kept in cyclic orientation. Obviously, between ordered graphs (with ““numbered through”’

vertices and edges) and elementary networks, singlevaluedness is restored.

The index of simplicity of a graph is defined as the sum of the weights of the functional elements
whose symbols are written down under its vertices (i.e., its index of simplicity equals the index of simplicity

of the resulting network).

]

*
161 does not exceed the number of ways of inserting ‘‘commas’’ among the digits of an h'—digit number (cf.

the preceding footnote), in such a way that between successive digits not more than one comma is inserted.

*
7 Forh < 1, n must always be not less than 1.
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Fig. 11

4. We introduce some notation.

Q(n, L) is the number of functions of algebraic logic in n arguments Xy, X, realized by networks
of functional elements from {E} with index of simplicity not exceeding L. Q'(n, L) is the number of networks
made of functional elements from {E} with index of simplicity which does not exceed L, realizing functions
of algebraic logic in n arguments x,, -+, x . Q"(n, L) is the number of oriented graphs with n distinct input
vertices, not containing oriented cycles, and with introverted vertices under which are written symbols for
the functional elements of {E}, and edges under which are written integers from 1 to m, having an index of

simplicity not exceeding L.

From what was said above, it follows that

Qn, L) £ Q'(n,L) £ Q"(n, L) (7.1)

5. Let {E} consist of functional elements Eij’ 1SS M,1=i= m;the element Eij has i input

terminals and its weight equals P,..
]

We designate by k.. the number of elements, E .. in the graph G, and set h = 2 k... We obtain an
gnate by h;; i grap i

upper litl)und for some auxiliary function of order structure for a graph, having index of simplicity (equal to

m ] P..
Y 3 kP ) , not exceeding L. We define*1® p = min “L_ . Thus for arbitrary i and j (2 < i Sm,
i=1 j=1 4 U i> 2 i-1
1< j<M)i-1=— P.. Hence

o i

*18 e recall that all Pi are positive.
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M; M;
m m 1 1
(L) -~k = @2 i-1 % hij < g % — hij Pij < —L. (7.2)
i= j=1 i=2 j=1 e P
Moreover, if I1 = min Pij , then
i,j
m M 1 m M 1
h= 2 S h.S — X S hk.P.=— L. (7.3
i=1 j=1 Y @7 i=1 j=1 Y Y 7

6. We will compute the number H (L) of order structure H for graphs with index of simplicity not
exceeding L. This number does not exceed the number of nonnegative integers satisfying the inequality
M;

b

1 j=1

M3

h-.P..SL,
i " ij

i

which does not exceed the number satisfying the inequality

’

m 1
S 2 k.S —1L
i=1 j=1 Y i

because Pij > 71. The number satisfying the last inequality does not exceed the number of ways of decompos-

M.,ie"1®
[ be

1

1 m
ing the number | — L] into M + 1 ordered nonnegative integral parts, where ¥ = X
™ i=

Thus,

H(L)f(l L+M>M. (7.4)
T

7. It is clear that

Q"(n, L) < H(L) - R(n,H) - M* mh . (7.5)

*19 Cf. footnote 15.
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From lemma 2, (7.2), (7.3), (7.4) and (7.5) it follows that

1 M
Q" (&, L) = <— L+ M> . g HA () (RUD DR (3y0h
77

A
—_—
|v—4
I~
*.
=
N—
[o o]
—
3 |
+
o |
~—
h
—_—
lr—a
—
n
=
——
3
h
+
3
<
3
S
3|~
h
_—
-3
N
S’

n
An immediate examination can convince, as a consequence of (7.6), that for L < p— (1 - €)

[for arbitrary € > 0 and n > n(¢)] "

Q” (n, L)

92"

-0 asn— o,

Finally, taking (7.1) into account, we obtain a lower bound for L (n), asymptotically equal to the

upper one produced in § 6 (because o is the minimum reduced weight for functional elements), and the second

part of Theorem 4 is proved.

Theorem 4 is completely proved.
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